Package index
-
read_pepdiff() - Read proteomics data into a pepdiff_data object
-
combine_tech_reps() - Combine technical replicates
-
import_data() - read data from a file
-
new_pepdiff_data() - Create a new pepdiff_data object
-
validate_pepdiff_data() - Validate a pepdiff_data object
-
print(<pepdiff_data>) - Print method for pepdiff_data
-
summary(<pepdiff_data>) - Summary method for pepdiff_data
-
subset(<pepdiff_data>) - Subset a pepdiff_data object
-
plot(<pepdiff_data>) - Plot method for pepdiff_data
-
compare() - Compare peptide abundances between conditions
-
compare_glm() - Compare using GLM
-
compare_art() - Compare using ART
-
compare_pairwise() - Compare using pairwise tests
-
compare_pairwise_rankprod() - Compare using Rank Products (full matrix approach)
-
compare_within_strata() - Compare within strata
-
significant() - Extract significant results
-
get_peptide() - Get results for a specific peptide
-
get_comparison() - Get results for a specific comparison
-
new_pepdiff_results() - Create a new pepdiff_results object
-
validate_pepdiff_results() - Validate a pepdiff_results object
-
print(<pepdiff_results>) - Print method for pepdiff_results
-
summary(<pepdiff_results>) - Summary method for pepdiff_results
-
plot(<pepdiff_results>) - Plot method for pepdiff_results
-
long_results() - Convert wide format results table to long format
-
build_results_tibble() - Build results tibble from model output
-
build_pairwise_results() - Build results tibble from pairwise tests
-
plot_fit_diagnostics() - Plot GLM fit diagnostics
-
extract_diagnostics() - Extract model diagnostics
-
extract_stored_residuals() - Extract stored residuals and fitted values for selected peptides
-
get_all_residuals() - Get standardized residuals from all peptide models
-
print_diagnostic_summary() - Print diagnostic summary to console
-
plot_pca() - plots a pca on the treatment, seconds, bio-rep
-
plot_pca_simple() - Simple PCA plot for pepdiff_data
-
plot_heatmap() - makes heatmap from all experiments, filter on a single metric and sig value
-
plot_volcano_new() - Volcano plot for pepdiff_results
-
plot_volcano_bf() - Volcano plot for Bayes factor results
-
plot_pvalue_histogram() - P-value histogram for pepdiff_results
-
plot_fc_distribution_new() - Fold change distribution for pepdiff_results
-
plot_bf_distribution() - Bayes factor distribution plot
-
plot_distributions_simple() - Simple distribution plot for pepdiff_data
-
plot_missingness_simple() - Simple missingness plot for pepdiff_data
-
plot_quant_distributions() - draw density plots for data
-
plot_fc() - plot histogram of fold change distribution for a comparison
-
plot_kmeans() - K-means cluster the data on the samples
-
plot_result() - plot the p-values against fold change for the tests used in `compare()`
-
volcano_plot() - volcano plot the data
-
p_value_hist() - plot histograms of p-values for each test used
-
fc_qqplot() - plot qqplot of fold changes from a comparison
-
norm_qqplot() - draw qqplots for data
-
missing_peptides_plot() - plot the representation of peptides in each group.
-
times_measured_plot() - plot the count of the number of times peptides were measured.
-
test_wilcoxon() - Wilcoxon rank-sum test for two groups
-
test_bootstrap_t() - Bootstrap t-test for two groups
-
test_bayes_t() - Bayes factor t-test for two groups
-
test_rankprod() - Rank products test for two groups
-
jzs_bf_approx() - JZS Bayes factor approximation
-
classify_bf_evidence() - Classify Bayes factor into evidence categories
-
calc_t_statistic() - Calculate t-statistic for two groups
-
calc_rank_product() - Calculate rank products for two groups
-
build_replicate_matrix() - Build replicate matrix from pepdiff_data
-
fit_glm() - Fit a Gamma GLM for a single peptide
-
fit_art() - Fit an Aligned Rank Transform model for a single peptide
-
fit_and_extract_glm() - Fit GLM and extract contrasts for one peptide
-
fit_and_extract_art() - Fit ART and extract contrasts for one peptide
-
extract_contrasts_glm() - Extract contrasts from a fitted GLM using emmeans
-
extract_contrasts_art() - Extract contrasts from a fitted ART model
-
run_models() - Run statistical model for all peptides
-
has_sufficient_variation() - Check if a model has enough variation to fit
-
build_formula() - Build formula from factor names
-
assess_missing() - calculate the proportion of peptides with missing values per group in a data set.
-
compute_missingness() - Compute missingness statistics per peptide
-
compute_design_summary() - Compute design summary from data
-
times_measured() - calculate number of measurements of each peptide in each treatment and time
-
fold_change_matrix() - returns a matrix of fold change values
-
matrix_data() - Convert data frame to matrix format (legacy)
-
list2mat() - converts a results object to a matrix as if for direct use in external heatmap functions
-
mean_fold_change() - Calculate mean fold change for peptide
-
log2_fc() - Calculate log2 fold change
-
apply_fdr_by_comparison() - Apply FDR correction within groups
-
compare(<data.frame>) - Default compare method for legacy data frames
-
compare_legacy() - Legacy compare function (deprecated)
-
compare_many() - compare many combinations of treatment and control
-
compare_calls() - compare sets of significant peptides called by the used data
-
get_sig_rows() - works out if a peptide has at least one significant value across the experiment Composes a matrix of the `metric` significance values with peptides in rows, experiments in columns and works out if each peptide row has a value below the stated cut off
-
estimate_result_clusters() - plots a Figure of Merit curve to help estimate the number of clusters in the results
-
kmeans_by_selected_cols() - Perform kmeans of a dataset using just data in selected columns, then return matrices of all columns
-
get_bootstrap_percentile() - get p values for contrast using boostrap t test
-
get_wilcoxon_percentile() - get p values for contrast using Wilcoxon test
-
get_kruskal_percentile() - get p values for contrast using Kruskal-Wallis test
-
get_rp_percentile() - get p values for contrast using Rank Products test
-
get_percentile_lowest_observed_value_iterative() - get p values for contrast using normal percentile
-
select_columns_for_contrast() - Select columns for contrast (legacy)
-
min_peptide_values() - Find minimal values for a peptide across replicates (legacy)
-
replace_vals() - Replace missing values with replacements (legacy)
-
metrics() - reports metrics available for significance values
-
validate_factors() - Validate factor columns exist in data
-
validate_positive() - Validate positive values for Gamma GLM
-
check_zeros() - Check for zeros in values (used before GLM fitting)
-
is_useable() - Check if values are useable (non-NA and non-NaN)