Perform kmeans of a dataset using just data in selected columns, then return matrices of all columns
kmeans_by_selected_cols.RdPerform kmeans of a dataset using just data in selected columns, then return matrices of all columns
Usage
kmeans_by_selected_cols(
l,
cols = NULL,
log = TRUE,
base = 2,
sig_only = TRUE,
sig_level = 0.05,
metric = "bootstrap_t_p_val",
k = NA,
nstart = 25,
itermax = 1000
)Arguments
- l
list of results, usually from `compare_many()`
- cols
names of columns to perform the k-means with
- log
whether to log the data
- base
base used in logging (default = 2)
- sig_only
return only rows with 1 or more values significant at `sig_level` of `metric`
- sig_level
significance level cutoff
- metric
the test metric used to determine significance one of: `bootstrap_t_p_val`, `bootstrap_t_fdr` `wilcoxon_p_val`, `wilcoxon_fdr` `kruskal_p_val`, `kruskal_fdr` `rank_prod_p1_p_val`, `rank_prod_p2_p_val`, `rank_prod_p1_fdr`, `rank_prod_p2_fdr`.
- k
number of clusters to make
- nstart
nstart value for `kmeans()`
- itermax
number of `kmeans()` iterations (1000)