Ecosystem Overview¶
The TSL Structures project provides two main tools for working with protein structure datasets.
Tools¶
tsp-maker (Python)¶
Purpose: Create TSP packages from prediction outputs
Install:
Capabilities: - Parse outputs from AlphaFold2, AlphaFold3, or Boltz2 - Build TSP packages with standardised metadata - Upload datasets to Zenodo
Documentation: teammaclean.github.io/tsp-maker
tslstructures (R)¶
Purpose: Find, download, and analyse TSP datasets
Install:
Capabilities: - Discover datasets in the TSL Structures Zenodo community - Download and cache datasets locally - Query metadata and filter structures - Extract structures for analysis
Documentation: teammaclean.github.io/tslstructures
How They Work Together¶
┌─────────────────────┐
│ Prediction Tools │
│ (AF2, AF3, Boltz2) │
└──────────┬──────────┘
│
▼
┌──────────────────────────────────────────────────────────────────────┐
│ DATA PRODUCER │
│ │
│ 1. Run predictions │
│ 2. tsp-maker parse af3 /predictions /intermediate │
│ 3. tsp-maker build /intermediate /my-dataset --name my-structures │
│ 4. tsp-maker upload /my-dataset --publish │
│ │
└──────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────┐
│ Zenodo │
│ (with DOI) │
└──────────┬──────────┘
│
▼
┌──────────────────────────────────────────────────────────────────────┐
│ DATA CONSUMER │
│ │
│ datasets <- list_datasets() │
│ install_dataset("10.5281/zenodo.12345678") │
│ ds <- load_dataset("my-structures") │
│ high_conf <- ds |> filter(plddt_mean > 90) │
│ structure <- get_structure(ds, "P12345_AF3_1") │
│ │
└──────────────────────────────────────────────────────────────────────┘
Component Summary¶
| Component | Language | Purpose | For |
|---|---|---|---|
| tsp-maker | Python | Create and upload datasets | Producers |
| tslstructures | R | Find and use datasets | Consumers |
| Zenodo | - | Host datasets with DOIs | Distribution |
Further Reading¶
- Installation — setup instructions
- Creating Datasets — producer workflow
- Using Datasets — consumer workflow